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Non-linear heat conduction in dense fluids 

R E Nettleton 
Department of Physics, University of the Witwatersrand, Johannesburg, South Africa 

Received 13 January 1987 

Abstract. In a dense fluid with very large heat flow J, the thermal conductivity A = A o +  A,J’. 
An estimate of A J A o  is made for hard spheres with mass and diameter appropriate to Ar 
and density just below the gas-solid transition. This estimate indicates that Fourier’s law 
will hold in the form appropriate to low J if J <  lo9 W m-’ and that the J dependence of 
pressure and internal energy is of the same order as that of A. The calculation utilises an 
earlier derivation from the classical Liouville equation which expresses A at high density 
in terms of the thermodynamic pressure. The latter can be calculated with the aid of 
reciprocity and integrability conditions of extended non-equilibrium thermodynamics 
which treats J as a state variable. 

1. Introduction 

It has been shown (Nettleton 1985a) that if the non-equilibrium state variables include 
dissipative fluxes of the type 7) = ( i iA(x)) ,  where f is the self-adjoint Liouville operator 
and A(x) a function of the phase point x in space which is even under momentum 
reversal, then the rate equations for 4 can be cast in Onsager-Casimir canonical form. 
The coefficients are, in general, non-linear in the 7 variables and exhibit reciprocity. 
In the case to be considered here, the system is a cube of side I -  1 p m  immersed in 
a continuous fluid and the state variables are N,  the number of particles, V = 1 3 ,  T, 
and J, the heat flux density, which is an 7) type variable. Our aim is to apply the 
reciprocity and integrability conditions of non-equilibrium thermodynamics to calculate 
the O( J 2 )  contributions to the thermal conductivity, pressure and internal energy of 
a dense fluid in a steady state in which J may be large. Quantitative estimates will be 
made for hard spheres in the high-density limit of the gas phase to show that the O( J 2 )  
corrections for that case are negligible unless J is extremely large. 

The relaxation of J toward the steady state, where it is proportional to VT, is 
governed by the Cattaneo-Vernotte equation (Cattaneo 1958, Vernotte 1958) which 
has the form 

(1) 
where a < O  and both a and y have contributions O ( J * ) .  If those contributions can 
be evaluated with the aid of expressions from microscopic theory, then we can obtain 
the O ( J 2 )  contribution to the thermal conductivity, A = - y / a .  An expression for y 
has been derived (Nettleton 1984a) by applying a projection operator to the classical 
Liouville equation generalised to include interactions with the surroundings. This 
limits us to high densities since use of the N-particle Liouville equation assumes that 
N does not vary appreciably during the relaxation of the fast variable, J, so that the 
relaxation dynamics is approximately that of a closed system. The surrounding fluid 

aJ la t  = aJ - yV T 
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is represented by heat reservoirs whose temperature difference creates the macroscopic 
V T .  These reservoirs exert, across the boundaries of the system, forces which can be 
expressed in terms of the thermodynamic pressure, thus giving an expression for y 
which we can calculate. 

Once y is evaluated, we can cast (1) in the Onsager-Casimir form by setting 
aJ = LQ, where Q, = - d F / d J  is a thermodynamic force and L a phenomenological 
coefficient. By invoking a reciprocity relation involving y, we can determine the O( J 2 )  
and O(lJ14) terms in the Helmholtz function F, and from it the leading J dependence 
of the pressure and internal energy, U. From U we can estimate the difference T - 0 
between the thermodynamic and local equilibrium temperatures. Then invoking an 
estimate of the O( lJ14) terms in F, we can, with the aid of an expression from microscopic 
theory, evaluate the O ( J 2 )  contribution to a, which is used in finding the leading J 
dependence of A. 

In the following section, we write down the results, obtained by applying reciprocity 
to ( l ) ,  which enable us to calculate the J-dependent terms in F from those in y. We 
shall also describe the calculation of the O ( J 2 )  terms in the other thermodynamic 
functions and in T -  8. In § 3, we shall express y in terms of the thermodynamic 
pressure in the dense fluid limit. In § 4, these results are specialised to the case of the 
hard sphere model, and numerical estimates made of the coefficients of the leading 
J-dependent terms in all the above-mentioned functions. A discussion is given in § 5 
where we remark on the limitation of the formalism used here to high densities and 
near-steady states and calculate A o ,  the J +  0 limit of A, giving the corresponding limit 
of a and the relaxation time. 

2. Application of reciprocity and integrability conditions 

We proceed here to show how we can calculate the J dependence of the Helmholtz 
function, F (  N, V, T, J )  if we can calculate y. This involves an antireciprocity relation 
which couples the thermodynamic force - V T - ' V T  to the force Q,= - ( d F / d J ) , , ,  
conjugate to 4. Since (1) for a J / a r  depends on the first of these forces, the anti- 
reciprocity relation implies that we should be able to write the trivial equation J = J 
in the form 

J = - yTV-'Q,. ( 2 )  
This relation is a necessary condition that the irreversible entropy production be positive 
definite. By comparing similar powers of J on each side of ( 2 ) ,  we can express the 
expansion coefficients of Q, in terms of those in y. 

To this end, assume 

y =  yo(n, T ) + y 2 J 2 + .  (3a )  

Q,= -p2J+puqJ2J+. * * (3b) 
where n = ( N /  V). p2 should be > O  and >>p4, since -ip2J2 is the leading term in the 
J dependence of entropy, S, expanded at constant U, and this term is less than 0 to 
make S a strong maximum in thermal equilibrium. Substituting ( 3 4  b) into the 
right-hand side of (2), and comparing coefficients of corresponding powers of J on 
the right- and left-hand sides, we infer that 

p z y o V - ' T =  1 (40) 

p2Y2= p4YO. (46) 
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This shows that we can determine the coefficients in the J expansion of @, and therefore 
of F, if we can obtain yo,  y 2  and the higher-order coefficients in y. Calculation of y 
will be taken up in 0 3. 

Once we have p 2 ,  we can invoke the integrability conditions to calculate the O( J2) 
contributions in the thermodynamic pressure P and in U :  

P=P,(n,  T ) + P 2 J 2 +  . . .  (5a)  

U = U o ( N ,  V , T ) + U 2 J 2 +  . . . .  (5b) 

Po and U, are equilibrium equations of state, while U, and P2 are calculated with the 
aid of the Gibbs equation (Nettleton 1961) 

T d S  = d U  + P d V + @  * d J  ( 6 )  

which is equivalent to 

d F = - P d V - S d T - @ .  dJ. (7) 

The condition that d F  be a perfect differential implies that 

a P / a J = a@/ a V 
p - - I  

2 -  2 + 2 / a ~  
(8a)  

(8b) 

Similarly, from (6) and the integrability condition a s / a J  = a@/aT, we obtain 

2 U2 = - T(ap2 /  a T) + p2. (9) 

The expressions ( s a )  and ( 5 b )  permit us to expand e p = N N - ' ( a U / d T ) p  and 
c y p  = V-'(a V/aT), in powers of J. We give the result for use in 0 4: 

ep = e:--n-'J2(TV-'a2p2/aT2- a:(dpr/aV- Ta'pJaVaT) 

aP = a i - - ; ( & -  J {a p2/aVaT-[(aPolaT) l (aP, /aV)]  a2p2/av2} 

+ (B,)-'(aU,/a V ) T [ a 2 ~ 2 / a  V a T  + (a V/aT)pa2p2/a V']} (100) 

( lob)  1 2 2  

where B, is the equilibrium isothermal bulk modulus. 
We can also calculate the difference between the thermodynamic temperature, T, 

which appears in (1) and ( 6 ) ,  and the local equilibrium temperature, e, defined as a 
function of U by 

U =  u,(N, v, e).  (11) 

It has been remarked (Casas-Vizquez and Jou 1981) that the inequality of T and 0 
must be taken into consideration in comparing thermodynamic predictions with experi- 
ment. A computer simulation can yield e and then T must be calculated from 

T - 8 = - U2J2/ C:(  0) + O(lJ14) (12) 

where C:  is the equilibrium specific heat. Equation (12) will be used to make a 
numerical estimate for hard spheres in § 4. 

If T - 0 should be appreciable, which we shall find is not the case for dense hard 
spheres, then the expression for thermal conductivity will depend on whether T or e 
is used in Fourier's law in the steady state. To express the steady-state heat flow in 
terms of V T ,  we expand 

a = a. + a , ~ ' +  O( 1 ~ 1 " )  (13) 
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in (1) and  obtain 

J =vT{(yo /a0 )+  J’[(r21ao)- roa2(a~)-21+0(1J14)}. (14) 
Equation (14) permits us to evaluate the ratio of the O(J’) contribution to thermal 
conductivity, AzJ’, to the value A, applicable to the VT+O limit provided we can 
obtain a2/a, which we proceed to discuss. 

A discussion of the derivation of the kinetic equations for the 7 variables by 
application of a Zwanzig (1960, 1961) projection operator to the classical Liouville 
equation has given (Nettleton 1985a, equation (27)) general expressions for coefficients 
such as a, in (1). These can be used to relate a, and a, if we make an  ansatz (Nettleton 
1987) for a correlation function appearing therein which is determined to cancel 
unphysically large contributions which would otherwise figure in u 2 .  In doing this, 
however, we must take into account the fact that in the earlier work (Nettleton 1985a) 
the system was closed, and  expansions were at constant U, N, V, so that we must 
transform to coefficients at constant T, N ,  V.  Also, the forces here are T aS/as instead 
of asla7 as in the earlier work (Nettleton 1985a). All these considerations give 

a 2 - ( ~ 0 , ) - ’ ~ 2 a a 0 / a ~ =  - a o ( ~ 2 ) - ’ [ ~ 4 + ( ~ 2 / ~ ~ ) ( a ~ 2 / ~ ~ - ~ C L Z ~ ~ ) ~ .  (15) 
To justify using this result, one must show that J is an  77 variable, as assumed in 

the earlier work (Nettleton 1985a, 1987), i.e. that there is a dynamical function 2, 
such that J = ( i i i , ) .  A suitable choice is 

13& =C ( p f / 2 m ) r t + i  C ( r ,+r1)4+, -h  r, 
I I t 1  I 

where 4 is the pair potential and h the enthalpy per particle. 
If we insert (15) into (13), we obtain 

J = (yo/ao)V Ti1  + J2[2(y2/ yo) - (aoC~)-’aa,/dT - 2 (  TC:p2)-’ U:]}  

+ (a’ U,/a 6’) ( c:) -’ U, - ( C: ) - I  8 U,/ a e]} .  

(16a)  

(16b) 
In a hard sphere fluid 6 is proportional to the readily calculated kinetic energy per 
particle, making it the most natural temperature to use in computer simulation. 
Therefore, we shall evaluate in 0 4 the O ( J 2 )  term in (166). We shall also show there 
that the difference between VT and V6 is negligible for the dense hard sphere model. 

= (Yo/ao)V6{l+ J 2 [ 2 ( y , / y , ) - 4 ( 6 C ~ ~ 2 ) - ’ U ~ + 2 ( 6 C ~ ) - ’ U 2  

3. Evaluation of y 

We have previously derived (1) from the classical Liouville equation (Nettleton 1984a) 
by including in the latter the forces which act on the particles of the system as a result 
of pair interactions with atoms of the surrounding fluid. The latter is regarded as a 
pair of reservoirs at x = *il and temperatures T,. Since this model presumes N 
constant, the description should be limited to high density where each particle moves 
about in a cage formed by its neighbours. Only a fraction of the particles can move 
out of their cages and the dynamics of the system will not be affected appreciably by 
self-diffusion across the boundaries with the reservoirs during the short time required 
for relaxation of J to the steady-state value, - A V T .  So long as fluctuations in N are 
slow in comparison with those in the heat flow, we can generalise the picture to allow 
for them by replacing N + N, the ensemble average steady-state value, in the theoretical 
expressions derived here (Nettleton 1984b). 
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Under these circumstances it has been found (Nettleton 1984a, equation ( A 2 ) )  that 
interactions with the surroundings contribute to the Fokker-Planck equation for g (  U ) ,  
the distribution function for values U of the heat flux taken to be along x, a term 

y ( a g / a u , ) ( a T / a x )  = R ,  - R- ( 1 7 ~ )  

R, = ( a / a u )  1 g ( u )  (aAJ /ap , , )P f , ( r , ,  &-,  , p /  u ) d P  d u  d h - ,  . (176) 

In R,, r, is on the surface of the system in contact with a reservoir at temperature T, 
and f, is the phase space distribution of the N particles in the system with this 
restriction on r, together with the specification that the magnitude of the heat flow 
through the system is U. P, is the thermodynamic pressure under heat flow U when 
the temperature is T , .  Furthermore, in deriving (176) we represent the forces acting 
across the element of area d a  on the boundary at x = *$l by T P ,  du. This picture 
must fail at very low densities, where particles move freely across the boundary without 
collision with the surrounding fluid. 

We now modify the treatment given earlier (Nettleton 1984a) of (17a, 6)  in two 
ways. Firstly, we no longer assume the fluid to be dilute, and so we use in (176) the 
full expression 

(18) 

which is obtained by differentiating the general expression (Nettleton 1984a, equation 
(7)) for A,, the classical heat flux. Secondly, we are specifically concerned with steady 
states, and so we impose the condition of mechanical equilibrium, 

(19) 
i.e. the thermodynamic pressure is constant across the system as we go from the 
reservoir at T+ and x = f l  to the reservoir at T-  and x = -$l. If this condition is not 
imposed, R, - R- could also depend on V n, an additional state variable not needed 
for the description of steady states of the type we consider here. When V n  is a relaxing 
state variable, additional complications are required (Nettleton 1961 ) such as the 
division of J into two independent components, of which one component is carried 
by self-diffusing particles. These components are proportional to one another in a 
steady state, and so only one variable, J, is needed. 

Substituting (18) into (17b), we find, after carrying out the surface integration, that 
we can cast R ,  in the form: 

(20 )  
where n, and U, are, respectively, the number density and energy per particle at 
x = *f1, i.e. in the system boundaries. There is a density gradient across the system 
imposed by the mechanical equilibrium condition VP = 0, so that V n  is proportional 
to V T. Thus R+ - R - ,  which has terms in both V n  and V T, can be expressed in terms 
of VT only. Putting (20) into (17a), and noting that J ,  = j  g ( u ) u  du so that the first 
moment of the Fokker-Planck equation for g gives the Cattaneo-Vernotte equation, 
we find (Nettleton 1984a) that 

13(aA; /ap , , )=(2m 2 ) - I  p I  2 +m-2pfx+(2m)-1 1 ( + , , - + L ~ t r ; ~ ) - m - ~ h  
I f 1  

P+ = P- = P( n, T, J )  

R* = (ml)-'(a/au)[g(u)(P,/n,)(n,u,+ P, - n h ) ~  

- y a T / a x  = ( R ,  - R - ) U  dv (21) 

y = m - I P ( e P  + ~ ~ n - ' a ~ ) .  ( 2 2 )  

I 
where y has the form 

The notation is that of (loa, 6). 
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The dependence of P on J2 implies that y, EP and ap all have a corresponding J 
dependence found in (loa,  6). Utilising the latter equations in (22), we have 

yo= m-'Po[c;+ Pon-'a;] (23a) 

y 2  = m - ' ~ ~ [ E i +  ~ , n - ' a ; ]  

- (2mn)-' T{  V-'a2p2/aT2+ a0,[a2p2/a v ar + (a v / a ~ ) ~ a ' p ~ / a  v2]}. 
(236) 

Equations (4a)  and (23a) imply that 

p 2  = ~ v [ P , T ( E ' O , +  ~ , n - ' a i ) l - ' .  

These results can be used to calculate p4 from (46), P2 from (8b), U, from (9) and 
the O ( J z )  term in the thermal conductivity from (166). This will be done for the 
hard-sphere model in the following section. 

4. Numerical estimates for rigid spheres 

To use the theoretical expressions for Pz ,  y 2 ,  p 2  and the O ( J 2 )  term in T - 8 developed 
in preceding sections, we require equilibrium equations of state for Po(n, 8 )  and 
U,( N, V, e). In the hard-sphere model, Po is proportional to 8 and U,, = tNK8, leading 
to simplifications in the expressions to be evaluated. Furthermore, 8 is proportional 
to the kinetic energy per particle which facilitates computer simulations to determine 
the coefficient of V 0 in (166). Therefore, with a view to prediction of possible computer 
results we shall evaluate the O(J2 )  term in (166) for hard spheres of diameter U at a 
local equilibrium temperature 8. The density is chosen below but close to the hard- 
sphere gas-solid transition to validate the assumption that most particles move about 
in cages in which they are imprisoned by their neighbours. 

If we define 6 0 =  :vu3 and x = ban, the gas phase hard-sphere equation of state, 
obtained by fitting a Pad6 approximant to computer results (Ree and Hoover 1964), 
assumes the form 

(25a) 

( 2 5 6 )  

(25c) 

Thus aPo/aT = Po/ T depends only on x and p2 is proportional to T-.' from (24), which 
simplifies some of the expressions we have to evaluate. In particular, with p2 from (24), 

Po = ( XK T /  bo)( 1 + X@l/@2]  

@'(x)  = 1 +0.063 507x+0.017 329x2 

@*(x) = 1-0.561 493~+0 .081  3 1 3 ~ ~ .  

For the numerical evaluation of the constants in (26a)-(26e), we shall take x = 1.7, 
which is just below the value x = 1.866 corresponding to the gas-solid transition. We 
shall set atomic mass m = 6.633 x kg appropriate to Ar and U = 3.64 x lo-'' m 
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corresponding to an  effective hard-sphere diameter for Ar (Hirschfelder et a1 1954, p 
545), giving bo = 1.01 x m3. The value 0 = 87 K is near the gas-liquid transition 
for Ar and we shall use this value to which the qualitative conclusions about the 
smallness of the coefficients in (26a)-(26e) are not highly sensitive. The numerical 
values calculated from the data and (25a) and (26a)-(26e) are listed in table 1 .  We 
include there the value of 

A2aol Yo = (2Y2/ Yo)  - 3 ~ d  oc:,) (27)  

which is the square bracket in (26c). This determines the non-linear effects, if any, in 
heat conduction. 

The estimates in table 1 show that we should have to have J - lo9 W m-' before 
non-linear effects become appreciable in heat conduction in the dense rigid-sphere 
gas. For example P2/ Po- m4 W-?. The fact that the smallness of the O ( J 2 )  
contribution is the same for all the functions considered resides in the circumstance 
that they are all proportional to U2/ U, = p2/ N K ~ .  Thus P2/ Po = -0 .339p2/N~6.  This 
factor does not depend on x, and so the conclusion of negligibility of non-linear effects 
should continue to hold so long as the gas can be categorised as highly dense. 

An estimate is made in table 1 of A. = -yo/ uo,  the thermal conductivity in the limit 
IV TI + 0. This can be obtained from the computer simulation of Alder et a1 (1970) 
which indicates that A o / A e -  1.01, where A, is &he Enskog dense gas approximation. 
The latter has been estimated to be A , =  1.025 13 x ( 7 5 / 6 4 ~ ' ) ( ~ ~ 0 / ~ m ) "  = 
9 . 5 0 ~  J s-' m-' K-' (Chapman and Cowling 1939, p 169). Thus A o =  
9.60 x J s-' m-' K-'. This permits us to evaluate a, for which no method of 
estimation is given above. Once a, is known, we can calculate the coefficients in 

L=AO+A2J2+0(1J14) (28a) 

4 0  = --A0 P2 (28b) 

a2 = -AzP2+ hop'%. (28c) 

These are of lesser interest, since they are not determined directly in simulations. 

Table 1. Numerical values calculated for a hard-sphere fluid at 0 = 87  K, x = 1.7, with 
particle mass and diameter appropriate to Ar. Sub- or superscript '0' denotes an equilibrium 
thermodynamic function and subscript '2' the coefficient of the square of the heat flux in 
the pressure, internal energy or the coefficient y of VT in ( 1 ) .  -yo/o,= A,, the thermal 
conductivity at low heat flow. f w 2  is the coefficient of the quadratic heat flow dependence 
of the Helmholtz free energy. 

1 . 6 2 ~  lon 
- 2 . 4 6 ~  1 0 - l ~  

3 . 9 0 ~  10-l9 

- 1 . 2 6 ~  10-9 

9.0s x 1 0 - 1 ~  
9.60 x 1 0 - ~  

3.24 x lo-' 
1.27 x 10" 

4.48 x 
-0.996 x lo-*" 

-3.44x 
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From the foreging estimate of A,,, we obtain the relaxation time - l / a o =  ho lyo= 
6.08 x lo-’’ s for J. The probability per unit time for appearance of a ‘hole’ in which 
self-diffusion can occur locally in liquid Ar at 87 K is 3.99 x lo9 s - ’  (Nettleton 1985b), 
and so the fraction of particles on the surface of the cube of side 1 which can self-diffuse 
out of their cages in one relaxation time is -0.242. Of these about or 0.0403 will be 
moving in the right direction to diffuse across the boundary, and a substantial fraction 
of these will immediately experience a hard collision, sending them back inside the 
system from which they have just escaped. Thus it should be a resonable approximation 
at high density to imagine the system to be contained in V by the surrounding fluid 
during the time - a i 1 ,  so that forces across the boundary can be represented by P. 

5. Discussion 

The foregoing theory predicts that in a hard-sphere system, close to the gas-solid 
transition density, a very large heat flow -lo9 W m-* is required before appreciable 
non-linear effects will be observed. To make this estimate, we had to evaluate y in 
(1) in terms of the thermodynamic pressure P which can be calculated from (4a)  and 
(8b). The arguments for this in § 3 rely on the picture according to which most particles 
are imprisoned in cages formed by their neighbours while those free to self-diffuse are 
likely to be turned back by collision immediately after crossing the system boundary. 
Thus, during the very short time of relaxation of J to the steady state the system is 
contained by the surrounding fluid, so that N is nearly constant and forces across the 
boundary can be expressed in terms of the pressure. 

As x decreases, this picture becomes progressively poorer and non-linear effects 
are likely to become more important. At very low density, most of the atoms can 
diffuse across the boundary without collision, and so the model described in preceding 
sections has no obvious relevance at all. The Boltzmann equation appropriate to dilute 
gases has predicted appreciable non-linear effects in heat conduction in plasmas (Eu 
1985a, b, c), and the Boltzmann equation approach is indicated, rather than the 
approach used here, at very low density. 

At high density, even if approximations made here reduce the quantitative accuracy, 
we can make a qualitative prediction for hard spheres that Fourier’s law will hold if 
IVTI is not extremely large. To compare such a prediction with a computer or 
experimental result, we need to be able to calculate or measure T, the thermodynamic 
temperature. In the laboratory, we can seek to measure T by inserting a gas thermometer 
into the wall of the tube through which J is flowing. If no appreciable part of J flows 
through the thermometer, heat should flow into it until it reads T. In a computer 
simulation, it is easier to calculate the local equilibrium temperature 8. The results in 
table 1 show that for dense hard spheres T -  8 is O ( J 2 )  and of the order of the 
non-linear terms in A, so that Fourier’s law will hold whichever definition we use for 
temperature unless IJI - lo9 W m-*, 

The estimates on which these conclusions have been drawn depend on y z ,  which, 
when inserted into (4b), gives a value for / . ~ 4 / / . ~ 2 .  Table 1 shows that this value is very 
small, so that the O ( J 2 )  term gives the dominant J dependence of F. The order found 
here for the ratio of O(v4) to O(7’) terms is similar to the magnitude found for a 
scalar structural parameter (Nettleton 1987) where 7 is the time rate of change of the 
volume fraction of ‘holes’. These estimates agree with the conclusion (Nettleton 1984a) 
that the Einstein approximation exp S2S/ K ,  with the fourth-order terms neglected, 
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should give the correlation function for fluctuations in A,  in a closed system and that 
appreciable deviations from predictions of the Einstein approximation arise from terms 
in g( U )  which depend explicitly oh V T and  arise from the coupling to the surroundings. 

All these calculations are based on a non-equilibrium thermodynamic theory, 
described in § 2 ,  which chooses N,  V, T and d as state variables. This should be 
appropriate to the neighbourhood of steady states far from equilibrium. However, for 
an  arbitrary non-equilibrium state in  a system subject to a large temperature gradient, 
the mechanical equilibrium condition V P = 0 no longer holds, and  there can be a n  
additional independent state variable which is a linear combination of V n  and VT 
(Nettleton 1961). Consistency then requires that J be divided into two components, 
of which one may be associated with self-diffusion and the other with the motion of 
particles in their cages. These components become mutually proportional in a steady 
heat flow, in which time derivatives of V n  and VT can be neglected, rendering these 
complications unnecessary. An exception is a gas-liquid phase boundary, where 0 n 
is the significant variable (Nettleton 1961). 
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